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Abstract – This paper presents S3, an efficient wideband spec-
trum sensing system that can detect the real-time occupancy
of bands in large spectrum. S3 samples the wireless spectrum
below the Nyquist rate using cheap, commodity, low power
analog-to-digital converters (ADCs). In contrast to existing
sub-Nyquist sampling techniques, which can only work for
sparsely occupied spectrum, S3 can operate correctly even
in dense spectrum. This makes it ideal for practical environ-
ments with dense spectrum occupancy, which is where spec-
trum sensing is most useful. To do so, S3 leverages MEMS
acoustic resonators that enable spike-train like filters in the
RF frequency domain. These filters sparsify the spectrum
while at the same time allow S3 to monitor a small fraction of
bandwidth in every band.

We introduce a new structured sparse recovery algorithm
that enables S3 to accurately detect the occupancy of mul-
tiple bands across a wide spectrum. We use our fabricated
chip-scale MEMS spike-train filter to build a prototype of
an S3 spectrum sensor using low power off-the-shelf compo-
nents. Results from a testbed of 19 radios show that S3 can
accurately detect the channel occupancies over a 418 MHz
spectrum while sampling 8.5× below the Nyquist rate even
if the spectrum is densely occupied.

1 Introduction

The past decade has witnessed significant changes in the wire-
less spectrum as the FCC (Federal Communications Com-
mittee) has repurposed many frequency bands for dynamic
spectrum sharing. This includes the 6 GHz band, released in
April 2020, to be shared between Wi-Fi 6E and the incumbent
users in this band like microwave backhaul [14]. Another
example is the 3.5 GHz Citizens Broadband Radio Service
(CBRS) band, which was recently approved for commercial
deployments in September 2019. To leverage the CBRS band,
unlicensed devices must sense a 200 MHz spectrum and avoid
causing interference to primary and licensed users like mili-
tary radars [13]. Of course, an earlier and more well-known
example of spectrum sharing is the TV White Spaces which
were released in 2010 [15]. Moreover, there are lots of oppor-
tunities for spectrum sharing in the millimeter-wave frequen-
cies. In particular, the FCC released 14 GHz of unlicensed
spectrum in the 60 GHz band that can be shared among Wi-Fi
and IoT technologies [16]. These changes have been driven
by the ever-increasing demand for wireless connectivity and
aim to exploit previously underutilized frequency bands to

accommodate new unlicensed applications and achieve highly
efficient usage of the spectrum.

Efficient and truly dynamic spectrum sharing, however,
requires unlicensed devices to sense wideband spectrum (hun-
dreds of MHz to GHz) in real-time to spot and access mo-
mentarily idle channels. Unfortunately, real-time wideband
spectrum sensing is challenging since it requires high-speed
analog-to-digital converters (ADCs) that can sample the sig-
nal at the Nyquist sampling rate. Such high-speed ADCs are
expensive, have low bit resolution, and can consume several
watts of power [4, 12, 19, 34, 58].1 To avoid using high-speed
ADCs, today’s systems sequentially scan the spectrum, moni-
toring each narrow band for a short period of time [11,47]. As
a result, they cannot continuously sense all bands in real-time
and can easily miss highly dynamic and fleeting signals such
as radar waveforms in the CBRS band [53].

Past work has proposed using compressive sensing or
sparse Fourier transforms to sense wideband spectrum with-
out sampling at the Nyquist rate [21, 27, 31, 41]. However,
these approaches inherently rely on the assumption that the
frequency spectrum is sparsely occupied. Hence, they only
work in the case of underutilized spectrum where at most 5%
to 10% of the frequency bands are occupied [21,58]. The goal
of dynamic spectrum sharing, however, is to efficiently utilize
the spectrum. Hence, wideband spectrum sensing must work
even in a densely occupied spectrum in order to scale usage
to many users and achieve high utilization.

In this paper, we introduce S3 (Spectrum Sensing Spike-
train), an efficient low power spectrum sensing system that
can monitor the real-time occupancy of multiple frequency
bands in a wide spectrum. S3 samples the wireless spectrum
below the Nyquist sampling rate using cheap, commodity,
low power ADCs but does not assume that the spectrum is
sparsely occupied. A key enabler of S3 is the use of MEMS
(mirco-electro-mechanical-system) acoustic resonators that
can create a spike-train like filter in frequency as shown in
Fig 1. The MEMS filter processes the signal in the acoustic
domain using carefully designed piezoelectric resonators with
an assortment of equally spaced resonance frequencies. The
resonators will pass the signals in these resonance frequencies
and filter out the rest before converting the signal back to the
RF domain. This creates an RF filter with very narrow, sharp,
and periodic passbands across a wideband spectrum.

The spike-train filter enables S3 to sample the spectrum in

1In fact, the power consumption of spectrum sensors is dictated by the
ADC sampling rate as shown in [58]. Hence, we can significantly improve
the energy efficiency by reducing the sampling rate.
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Figure 1: Filtering using MEMS acoustic resonators.

the frequency domain and monitor a small fraction of band-
width in every band. S3 can then tell if a band is occupied
or idle by examining the sampled bandwidth in it, without
the need to recover the entire band. This is like finding an
available spot in a parking lot; We can tell if a spot is taken by
peeking at some part of the car in it and we don’t need to get
close to every spot and see the entire car. Moreover, even if
the wideband spectrum is densely occupied, the filter makes
the spectrum significantly sparser as shown in Fig. 1. This
enables S3 to sample the signal below the Nyquist sampling
rate and still recover the channel occupancies.

Translating S3 into a practical system, however, requires
addressing two key challenges. First, we need an algorithm
that can accurately and efficiently reconstruct the spectrum
occupancy. To address this, S3 builds on past work in sparse
recovery theory but differs from it in key aspects. In particular,
compressive sensing algorithms require randomly sampling
the time signal and cannot simply be implemented using low-
speed ADCs [27,59]. Sparse Fourier transform algorithms, on
the other hand, can be implemented using low-speed ADCs,
but they assume that the sparsely occupied bands are randomly
distributed in the frequency spectrum [17, 21]. The MEMS
filter creates a sparse spectrum that is highly periodic and
far from random. For such sparsity patterns, sparse Fourier
transform algorithms are highly sub-optimal.

S3 aims to achieve the best of both worlds, i.e. no random
sampling in time and no assumption of random distribution of
occupied frequencies. To this end, S3 leverages the uniquely
structured sparsity pattern created by the filter to overcome
the above challenges. The filter restricts the occupied frequen-
cies to known locations in the spectrum, which significantly
reduces the search space. It also allows us to optimize the
sub-Nyquist sampling rate. In particular, optimal recovery
can be achieved by choosing a sub-sampling factor that is
co-prime to the number of spikes in the filter, as we show in
section 5.

The second challenge is that in practice the MEMS res-
onators do not create an ideal spike-train. The spikes are not
extremely narrow and have a small passband bandwidth which
reduces the sparsity. Moreover, the separation between the
spikes is not perfectly equal, and the spikes themselves are not
identical. To address this, S3 leverages the fact that different
filters that are manufactured using the same process exhibit

a very similar non-ideal spike-train, as we show in Sec. 6.
Hence, the filter frequency response can be measured once
and incorporated into the design of S3. Specifically, we co-
design the hardware and recovery algorithm of S3 to account
for the filter non-idealities and optimize its performance.

Evaluation: We had fabricated a chip-scale MEMS filter,
shown in Fig. 1, which we leveraged to build a working proto-
type of S3. The prototype can sense channel occupancies over
a 418 MHz spectrum in real-time while sampling 8.5× below
the Nyquist rate. The prototype uses two cheap, low power,
off-the-shelf ADCs that sample around 50 MS/s (≈ 1/17 of
the Nyquist rate). We extensively evaluate the performance
of S3 using a wireless testbed with 20 software defined ra-
dios that can occupy the entire 418 MHz spectrum at various
power levels. Our results show that S3 can accurately detect
occupied channels. Even when the spectrum is as crowded as
90% occupied, S3 achieves a false positive rate of 0.02 and
a false negative rate of 0.0047. We also compare S3 to state-
of-the-art prior work like BigBand [21] and SweepSense [20]
and demonstrate 5−10× lower error rate for non-sparse spec-
trum. Furthermore, we show that S3 can recover the wireless
spectrum by performing outdoor and indoor measurements at
various frequencies using a spectrum analyzer as the ground
truth. Finally, we extend S3 to not only detect the occupancy
of the bands but also capture the power spectral density of
the spectrum by quickly sweeping the center frequency for
22 MHz to cover the separation between the spikes.

Contributions: This paper has the following contributions:

• The paper bridges the latest advances in overtone MEMS
acoustic resonators to RF spectrum sensing by leveraging
spike-train filters to enable cheap and low power real-time
wideband sensing of a densely occupied spectrum.

• The paper presents a novel sparse recovery algorithm that
leverages the uniquely structured spectrum sparsity to effi-
ciently recover a spectrum sampled significantly below the
Nyquist sampling rate.

• The paper builds a prototype using commodity low-power
components and evaluates its performance in a real testbed.

2 Background

In this section, we provide a brief background on wideband
spectrum sensing using sub-Nyquist sampling. Further related
work and background on spectrum sensing can be found in
section 9.

This paper builds on past work that senses wideband spec-
trum without sampling at the Nyquist rate using compressive
sensing [27, 31, 32, 39, 51, 58–60] or sparse Fourier trans-
form algorithms [21, 43]. However, these approaches only
work when the spectrum is underutilized and sparsely oc-
cupied which defeats the purpose of efficiently utilizing the
spectrum. Furthermore, compressive sensing needs random
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Figure 2: Spike-Train filter using MEMS acoustic resonators.

sampling [27, 58, 59], and as a result, requires custom hard-
ware designs that can consume as much power as an ADC that
samples at the Nyquist rate [1, 2]. Sparse Fourier transform
algorithms do not necessarily require random sampling but
must assume that the sparsely occupied bands are randomly
distributed in the frequency spectrum to accurately recover
the frequencies [17, 21].

BigBand [21] leverages sparse Fourier transform and uses
co-prime sampling to acquire a sparse bandwidth while sam-
pling 6× below the Nyquist rate. However, it only works up
to 10% spectrum occupancy at which point it cannot recover
the status of more than 14% of the spectrum. An extension,
D-BigBand [43] can sense dense spectrum by considering
the differential changes in occupancy. However, it assumes
that the spectrum occupancy is mostly static with very few
changes over time. Hence, it would not work for dynamic spec-
trum sharing where users sense and opportunistically transmit
whenever they find an idle channel. [30] also attempts to ex-
tend BigBand to dense spectrum but requires sampling the
signal first at the Nyquist rate in order to permute the sam-
ples and filter the signal before further sub-sampling it below
Nyquist. S3, on the other hand, can sense dense spectrum
without the need for Nyquist sampling or random sampling.
It also makes no assumptions on the changes in occupancy or
the distribution of occupied bands across the spectrum.

3 Spike-Train MEMS Filter

Our work builds on recent advances in overtone MEMS RF
filters [18, 40]. The MEMS filters convert RF signals into
acoustic vibrations through the piezoelectric effect, then filter
and process the signal in the acoustic domain before con-
verting it back to the RF domain. Such filters can be further
integrated with ICs to form an RF front-end solution, oper-
ating between a few MHz and 30 GHz for mobile and IoT
devices. To this end, past work on MEMS RF filters optimize
for a filter with a single passband [45, 64]. In contrast, the
MEMS filter used by S3 leverages overtone resonators that
have an assortment of equally spaced resonance frequencies
resulting in a spike train in the frequency domain. S3 uses
some of the very first spike-train MEMS filters which we had
designed and fabricated [28,29] to enable low power real-time
wideband spectrum sensing of densely occupied spectrum.

To better understand how the MEMS filter works, consider

the diagram of a MEMS acoustic resonator shown in Fig. 2(a).
This resonator is commonly referred to as a LOBAR (Lateral
Overtone Bulk Acoustic Resonator). The device consists of
three electrodes on the top of a thin film made of the piezoelec-
tric material LiNbO3. RF signals come through the middle
electrode and can be efficiently converted into acoustic waves
through the piezoelectric effect, as long as their frequencies
match the resonances of the film and are supported by the
electrode design. Otherwise, the signals are reflected back
and the frequencies are filtered out.

The resonance frequencies are determined by:2

(1) The width of the film: the film supports resonance fre-
quencies for which acoustic wave vanishes at the edges of
the film [8] i.e., the sine wave crosses zero at the edges as
shown in Fig. 2(a). This condition is satisfied when the width
of the film W is an integer (k) multiple of half a wavelength
(W = kλ/2). Since f = v/λ, where v is the acoustic veloc-
ity in the piezoelectric material, the MEMS resonator will
resonate at frequencies: fk = kv/2W .
(2) The placement of electrodes: the filter will operate at
center frequency fc determined by the distance D between
the electrodes: fc = v/2D. Furthermore, for an odd number of
electrodes, only acoustic waves that cross zero at the middle
electrode, as shown in Fig. 2(a), will resonate.

Thus, the resonance frequencies will be the fks around fc
where k is even. This leads to a filter with center frequency
fc and a spike train where the spacing between the spikes
is ∆ f = v/W . By modifying the width of the film and the
position of the electrodes, we can modify ∆ f and fc to control
the frequency of the spikes in the filter.

The bandwidth or frequency span of the filter around fc
is determined by the electrodes where their RF-to-acoustic
conversion efficiency degrades for resonance frequencies far
from fc, resulting in higher loss in spikes far from fc. Adding
more electrodes reduces the loss in spikes near fc but narrows
down the frequency span. We found that a three electrodes
give the widest span with minimal loss of at most 2 dB.

Finally, to further enable a filter with very sharp and narrow

2The filter design actually involves a 4-way trade-off between (1) the
frequency span, (2) the spacing between adjacent spikes, (3) the insertion
loss in the spikes, and (4) the out-of-band rejection. For simplicity, we focus
on the resonance frequencies design, and the trade-off between the frequency
span and insertion loss. More details on the MEMS filter design trade-offs
are discussed in [29].
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spikes, we combine 7 of these MEMS resonators in a ladder
filter topology [24]. Fig 2(b) shows an image of the filter
under the Microscope. The frequency response of the filter
is shown in Fig. 2(c). It has 19 periodic spikes with lowest
loss between 161 and 579 MHz spanning a wide bandwidth
of 418 MHz. The spacing between spikes is ∆ f = 22 MHz
and the width of each spike is around 1 ∼ 1.5 MHz. Such
an RF spike-train filter is the first of its kind. It presents a
unique opportunity for processing wideband spectrum, which
S3 leverages towards efficient low power wideband spectrum
sensing. It is also worth noting that the filter is passive and do
not consume any power.

4 S3 Overview

S3 leverages the MEMS spike-train filters to sense wideband
spectrum while sampling below the Nyquist rate. Fig. 3 il-
lustrates an overview of the system pipeline. The received
wideband spectrum is passed through the MEMS spike-train
filter which samples the bands in the spectrum along the
frequency axis. Specifically, the filter passes signals in fre-
quencies aligned with the spikes and suppresses all the rest of
the frequency components in the spectrum as shown in Fig. 3.
The output of the filter is a sparse spectrum that preserves a
small fraction of each band which we can use to monitor the
occupancy of the band. Since the output spectrum is sparse,
we can sample it below the Nyquist rate and still recover the
occupancy information efficiently.

S3 uses low-speed ADCs to sub-sample the signal. How-
ever, sampling below the Nyquist rate results in “aliasing” in
the frequency domain i.e., multiple frequencies across the
wide spectrum will alias (map) to the same frequency. Alias-
ing can lead to ambiguity and collisions, which prevent us
from distinguishing frequencies that are occupied from those
that are not. S3 leverages the uniquely structured sparsity at
the output of the spike-train filter to resolve such ambiguity
and collisions and recover the spectrum occupancy. Ideally,
one ADC is sufficient as we prove in section 5. However, due
to practical limitations and imperfections in the spike-train
filter, S3 must use two ADCs sampling at different rates to
accurately resolve ambiguity and collisions. We co-design
the hardware and recovery algorithm to optimize the ADC
sampling rates while accounting for the non-idealities of the
spike-train filter as we describe in detail in section 6.

5 S3 Recovery Algorithm

In this section, we describe S3 recovery algorithm assuming
an ideal spike-train filter. In later sections, we extend S3 to
deal with practical limitations.

Ideally, the spike-train filter will have equally spaced, very
narrow and sharp spikes that can be approximated as an im-
pulse train.3 The frequency response of such a filter can be
modeled as:

G( f ) =
K

∑
k

δ( f − k∆ f − f0) (1)

where K is the number of spikes, ∆ f is the spacing between
spikes, and f0 is the frequency of the first spike as shown
in Fig. 3. Hence, the filter covers a spectrum bandwidth of
BW = ∆ f ×K.

Let x(t) be the input wideband signal in time domain and
X( f ) be its non-sparse frequency representation whose band-
width is also BW . After passing x(t) through the spike-train
filter, we get the signal x̃(t) whose frequency spectrum is:

X̃( f ) = X( f )G( f ) =
K

∑
k

Akδ( f − k∆ f − f0) (2)

where Ak = X(k∆ f + f0). X̃( f ) is at most K sparse i.e., it has
at most K large frequency coefficients. Our goal is to recover
these K coefficients Ak and estimate their power to detect the
occupancy of the band around the frequency f0 + k∆ f .

S3 samples the signal x̃(t) using a low-speed ADC that sam-
ples at a rate R = BW/P where P is an integer corresponding
to the subsampling factor.4 The sampling rate R is chosen
such that K ≤ R≪ BW . Let y(t) be the sampled signal i.e.,
y(t) = x̃(P× t), and let Y ( f ) be the Fourier transform of y(t).
Then, Y ( f ) is an aliased version of X̃( f ):

Y ( f ) =
P−1

∑
i=0

X̃( f + iR) (3)

Y ( f ) will cover a narrow bandwidth equal to R where fre-
quencies in X̃( f ) that are equally spaced by R alias and sum
together in the same frequency bin in Y ( f ). Hence, once S3 de-
tects power in a frequency bin Y ( f ), it knows that this power

3We can approximate the spikes as impulses if the width of the spike
≪ 1/T where T is the time window over which we sample the signal.

4Note that for simplicity, we have assumed that the ADC takes complex
samples of the signal i.e., there are two ADCs sampling the I and Q of the
wireless signal. We will relax this assumption in the following section.
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could have come from P different candidate frequencies in
X̃( f ). Fig. 4 shows an example where if we sub-sample the
signal by a factor P = 2, then every two equally spaced fre-
quencies in X̃( f ) map to one value in Y ( f ). Since X̃( f ) only
has power in K coefficients Ak corresponding to the spikes of
the filter, S3 can easily eliminate a lot of candidates. Ideally,
we want these coefficients to map to different bins. In this
case, the bin value will be the same as the coefficient Ak which
we can immediately estimate. However, if two coefficients
Ak1 and Ak2 collide in the same bin as shown in Fig. 4, it will
not be possible for S3 to distinguish and estimate them.

S3 can choose the sampling rate R in a manner that guaran-
tees that no two coefficients collide. In particular, if the sub-
sampling factor P and the number of spikes K are co-prime,
then we can guarantee that none of K coefficients collide in
the same bin and become indistinguishable. To see this, con-
sider the example shown in Fig. 4 where we have K = 4 spikes
with coefficients A1 to A4 in the filtered spectrum X̃( f ). When
we sub-sample by a factor of 2 below Nyquist, there will be
collisions between A1 and A3, as well as A2 and A4. However,
when we sub-sample by a factor of 3 below Nyquist, none
of the coefficients collide, because the sub-sampling factor
P = 3 and the number of spikes K = 4 are co-prime.

It is worth noting here that even though P = 3 uses a lower
sampling rate than P = 2, increasing the sampling rate in
this case results in more collisions. This is in contrast to past
work on sub-Nyquist sampling [17,21] where higher sampling
rates reduce collisions as the coefficients are assumed to be
randomly distributed in the spectrum. Unlike past work, the
structured sparsity of our spectrum requires carefully selecting
the sampling rate to ensure that all coefficients can easily and
immediately be recovered.

The below lemma, theoretically proves that if P and K are
co-prime, then none of the coefficients will collide.

Lemma 5.1. Given K, P are co-prime integers, let fi and f j
be the frequencies of any two spikes in the spike train filter i.e.
fi = ki∆ f + f0 and f j = k j∆ f + f0 such that 0 ≤ ki,k j < K.
Then, for all fi ̸= f j, we have fi ̸= f j mod R.

Proof. Assume there exist an fi ̸= f j such that the coefficients
collide i.e., fi = f j mod R. Note that by definition of the spike
train, we also have fi = f j mod ∆ f . Consequently, fi and f j
are equal modulo the least common multiple: LCM(R,∆ f )
= LCM(BW/P,BW/K) = BW , since K and P are co-prime.

Algorithm 1 S3 Sensing with an Ideal Spike-Train Filter

Input: x(t)
Bk← Band around frequency f = k∆ f + f0
x̃(t) = g(t)⊛ x(t) ▷ Filter X̃( f ) = X( f )G( f )
y(t) = x̃(P× t) ▷ Sub-Nyquist Sample
Y ( f ) = FFT(y(t))
Ak = Y

(
(k∆ f + f0) mod R

)
if E

[
|Ak|2

]
> σ2 then

Bk is occupied
else

Bk is empty

Thus, fi = f j mod BW which is a contradiction since BW is
the entire bandwidth and we are given that fi ̸= f j. Hence, by
contradiction, for all fi ̸= f j, we have fi ̸= f j mod R and none
of the K coefficients collide.

Given that we can choose a sampling rate that results in
no collisions, we can easily recover the coefficients Ak as
follows. We can compute Y ( f ) by taking an FFT of y(t) and
for 0≤ k < K, we directly set Ak =Y ((k∆ f + f0) mod R). We
then apply an energy detector on Ak to obtain the occupancy
of the band around the frequency k∆ f + f0. If |Ak|2 is above
the noise floor, then the band is occupied, otherwise, it is
empty. A pseudocode for the overall sensing of S3 with an
ideal spike-train filter is shown in Alg. 1.

Next, we prove the below theorem about the correctness
and the computational complexity of the algorithm.

Theorem 5.2. Assuming a signal SNR > 0 dB for each oc-
cupied band, the system correctly recovers the occupancy of
the bands using O(K) samples and O(K logK) computations
which is optimal.

Proof. We will prove the above statement for the case where
the entire spectrum is occupied. We can compute the the
signal power of the filtered and sub-sampled signal as:

E
[
∥Ỹ ( f )∥2

2
]
= E

[
R−1

∑
f=0
|Y ( f )|2

]
= E

[
R−1

∑
f=0

P−1

∑
i=0
|X̃( f + iR)|2

]

= E

[
K

∑
k=1
|X̃(k∆ f + f0)|2

]
= E

[
K

∑
k=1
|Ak|2

]
≥ KE

[
min

k
|Ak|2

]
(4)

Let σ2 be the noise power per frequency. Since the spike-
train filter suppresses the noise outside the spikes, the remain-
ing noise in the signal is Kσ2. Hence, the SNR of the filtered
and sub-sampled signal is:

SNR =
E
[
∥Ỹ ( f )∥2

2
]

Kσ2 ≥
E
[
mink |Ak|2

]
σ2 > 1 (5)

Thus, as long as the received signal is above the noise floor i.e.
SNR > 1 (0 dB), filtering and sub-sampling will not increase
the noise floor and the occupancy of the band can be detected
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Figure 5: Aliasing of the spike-train filter at different sub-Nyquist sampling rates: (a) Locations of the 19 spikes on the frequency axis (b)Aliasing of the
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correctly. Now, the algorithm samples at rate R = O(K), takes
an FFT of size O(R) and then performs O(R) computations.
Hence, it requires O(K logK) computations and O(K) sample,
which is optimal. The algorithm is also deterministic, unlike
compressive sensing and sparse Fourier transform algorithms
which are randomized.

6 S3 with Practical Limitations

As mentioned earlier, the MEMS spike-train filter is non-ideal
i.e., the spikes have some width as can be seen from Fig. 6. Al-
though the ∼ 1.5 MHz bandwidth is narrow compared to the
channel bandwidth, it is still significant. Moreover, the spikes
are neither identical nor perfectly equally spaced. In fact, they
differ in magnitudes, bandwidths, and shapes. As a result, if
we simply pick a sub-sampling factor P that is co-prime to the
number of spikes K, there could be many collisions among
the wide spikes. Figure 5 shows how the 19 spikes of our
spike-train filter alias after sub-sampling. Figure 5(a) shows
the spikes in the original wideband spectrum, while Fig. 5(b-
d) show the aliasing of the spikes when sub-sampled at three
different sampling rates. First, we choose the sampling rate to
be 38 MS/s, because the resulting sub-sampling factor P = 11
is co-prime to K = 19. However, the aliased spectrum ends
up with many collisions, as shown in Fig. 5(b). This suggests
that the derived optimum no longer holds due to the practical
limitations of the filter.

Fortunately, different filters that are manufactured through
the same process exhibit a very similar spike train. Figure 6
compares the measured frequency responses of three spike-
train filters we fabricated. We zoom into two spikes, otherwise
the differences are very hard to spot. As one can see, the filters
are almost identical. Hence, we can measure the frequency
response of one spike-train filter and use it for the others.

Knowing the filter frequency response, we run an optimiza-

507

F
re

q
u

e
n

c
y
 R

e
s

p
o

n
s

e

475

(b)(a)1

0
(MHz)

Figure 6: Measured frequency responses of three fabricated MEMS
spike-train filters using the same process.

tion problem to find a sampling rate that has as little collisions
as possible. Ideally, this sampling rate should separate all the
wide spikes after aliasing and prevent them from overlapping
with one another. If a collision is unavoidable, we want it to
only occur at the boundaries of the spikes, rather than hav-
ing two wide spikes fully overlap. For example, as shown
in Fig. 5(b), the collisions marked in red are unacceptable,
because most of a spike’s frequencies experience collision.
In contrast, the collisions marked in green in Fig. 5(c) are
tolerable, because only the boundaries of two spikes collide.
Because we can simulate and compare the aliasing at different
sampling rates offline, the optimization problem, in fact, can
exhaustively search for all possible sampling rates.

Another practical aspect is that in the real system, we only
sample real signals and not complex in order to reduce com-
plexity. Since the signal is real, the frequency representation
is symmetric around the y-axis. Hence, with a sampling rate
of R = 38 MS/s, the wideband spectrum actually aliases to
a bandwidth of R/2 = 19 MHz. Formally, if the original fre-
quency of a spike is fspike = k R

2 +b, where b < R/2, then the
aliasing frequency falias of the spike can be found through the
following equation:

falias =

{
b if k is even
R
2 −b if k is odd

(6)

In our specific case, we find 45.5 MS/s to be a really good
sampling rate. As can be seen from Fig. 5(c), it spreads out
the aliased frequencies of the wide spikes to 1.5, 2.6, 3.8, 4.6,
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5.7, 7.3 MHz, etc. Therefore, most collisions only occur at the
boundaries of the wide spikes. However, it still cannot avoid
all unacceptable collisions. In fact, it’s likely that no sampling
rate can. For example, our spike-train filter has a unique 17th

spike that is composed of two very close spikes. When sam-
pling at 45.5 MS/s, these two small spikes completely overlap
with the 15th and 19th spikes respectively. Therefore, when
spike 15 and 19 are both occupied, we might falsely classify
the spike 17 as occupied.

To resolve such unavoidable collisions, we leverage another
sampling rate that provides us with a different set of aliasing
frequencies for the spikes. We pick the second sampling rate
in a way that any two spikes colliding at 45.5 MS/s do not
collide again. To this end, we find a good sampling rate of
52.74 MS/s, and the resulting aliased frequencies of the spike
train is shown in Fig. 5(d). One can see that the two parts of
spike 17 do not collide with any other spikes at 52.74 MS/s.
Thus, as long as we observe no power on frequencies corre-
sponding to spike 17 at 52.74 MS/s, we will classify spike
17 as empty. Hence, by leveraging such incoherence between
the two sampling rates, we can further resolve unavoidable
frequency collisions and correctly identify the empty bands.

Using the two sub-Nyquist sampled spectra, S3 recovers
signal power in each spike, and then identifies the occupancy
of the corresponding band. We leverage the two sampling
rates through a soft voting scheme. The idea is that given
an aliased spectrum and the sampling rate, we know all the
possible original frequencies that correspond to the aliased
frequencies. Hence, each aliased spectrum provides a vote
for the source frequencies of the non-empty spectral compo-
nents. Moreover, the non-empty frequencies on the original
spectrum are also constrained to the spike-train frequencies.
Therefore, when the two sampling rates vote for the same fre-
quency that also falls in a spike, the frequency is very likely
to be the true source frequency on the wideband spectrum.

Consider the two aliased versions shown in Fig. 7(a,b),

where 11 out of the 19 bands are occupied and the other
8 bands are empty. Now we use them to vote where the
non-empty frequency components come from. According
to Eqn. 6, aliasing folds the wideband spectrum on to the
bandwidth of R

2 . Therefore, we can vote on all the possible
source frequencies by unfolding the aliased spectrum. We
accomplish this goal in the following three steps:

• 1. Unfold - Flip: First, we flip the aliased spectrum Y ( f )
with a bandwidth of R

2 to get the bandwidth between R
2 and

R, as it equals to Y (R
2 − f ) according to Eqn. 6.

• 2. Unfold - Replicate: Then we replicate and concatenate
the resulting spectrum from 0 Hz to R, and we get a vote
for all frequencies in the frequency range of the spike train
as shown in Fig. 7(c).

• 3. Soft Voting: Finally, we combine the votes of the two
sampling rates, where we only consider the frequencies
within the spikes. This is done by multiplying the two votes
on every frequency and taking a square-root. As a result,
the non-empty frequencies that are voted by both sampling
rates are amplified. In contrast, the frequencies where the
two sampling rates vote differently will be attenuated as
shown in Fig. 7(d).

After unfolding the aliased spectra and recovering the fil-
tered spectrum through voting, we calculate the average signal
power in each spike by summing up the voting results and
divide it by the spike width. Additionally, we also estimate
the average signal power in the spikes using the unfolded
spectrum at each sampling rate separately. We classify a band
as occupied if all three power estimations in the correspond-
ing spike exceed a pre-selected power threshold. This power
threshold is selected based on the noise floor, which is mea-
sured when all bands are empty. By using all three estimates,
we add hard voting on top of the soft voting which adds more
robustness to the occupancy detection.
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7 Implementation

A. Basic Prototype: We have built a basic prototype of an S3

spectrum sensor by combining our MEMS spike-train filter
with commodity, off-the-shelf, low-power components. Fig-
ure 8(a) shows the circuit diagram of this basic prototype,
and the actual prototype is demonstrated in Fig. 8(b). The
signal is received through a broadband receiver. It is bandpass
filtered and amplified before down-conversion to an interme-
diate frequency (IF) between 150 and 600 MHz. The IF signal
is bandpass filtered and passed through the spike-train filter.
It is then split and sampled by the two synchronized ADCs.

We wire-bond the MEMS spike-train filter onto a gold-
plated PCB (printed circuit board) as shown in Fig. 8(b). We
use K&S 4523A Wedge Bonder and 25 µm Aluminum wire.
We use two Anolog Devices LTC2261-14 14-bit ADCs to
sample the output of the spike-train filter. This ADC features
an 800 MHz wideband input analog bandwidth and low power
consumption of 89 mW. The ADC sampling is timed through
an external square-wave clock signal. We use the DC1370A
ADC evaluation board and the DC890 data acquisition con-
troller to control the ADC sampling through the open-sourced
LinearLab Tools Python API. We bypass the input low pass
anti-aliasing filter on the ADC evaluation board to maintain
the wide analog bandwidth.

B. Extending the Prototype: The above basic prototype us-
ing only one spike-train filter can be extended to sense spectra
with different center frequency, bandwidth, and channel allo-
cation. Moreover, system level parallelism introduces another
degree of freedom and allow us to break the fixed design
trade-offs at the filter level.
• Different Spectrum: By changing the LO frequency as

well as the RF bandpass filter and LNA, we can sense dif-
ferent frequency ranges. In our evaluation, we test at center
frequencies of 2.1, 2.4, 4.9, and 5.7 GHz.

• Larger Bandwidth: The current spike-train filter supports
a bandwidth of 418 MHz. We can extend S3 to larger band-
width by either using two sensors and configuring them to
sense adjacent spectra or by using two MEMS filters in par-
allel channels before combining the signals and sampling it
as we describe in more detail in appendix A.

• Narrower Bands: The spikes in the spike-train filter are
separated by 22 MHz. Hence, narrowband signals (< 20
MHz) that are not aligned with the spikes might be filtered
out. To address this, we can combine frequency domain

sampling with LO frequency sweeping over 22 MHz to
capture and sense all the frequencies in the spectrum as
shown in our results in section 8. Alternatively, we can
design a MEMS filter with narrower spacing as explained
in section 3 or use two MEMS filters and set the center
frequency to be slightly different as we describe in more
detail in appendix A.

C. Testbed: We evaluate the performance on S3 both through
controlled experiments in an indoor wireless testbed as well as
through measurements of ambient transmissions outdoors and
indoors. The wireless testbed allows us to control the spec-
trum sparsity, how fast the occupancy changes for different
bands, the type of signals transmitted, and the power of vari-
ous transmissions. It also allows us to know the groundtruth
band occupancy in order to evaluate the performance of S3.

The testbed, shown in Fig. 8(c), can create a 418 MHz spec-
trum with various occupancy status at different frequencies.
It consists of 19 N210 USRP software-defined radios, each
transmitting on a 25 MHz bandwidth. While the USRPs are
not very far from each other, we vary their transmission power
randomly by up to 10 dB and observe received signal SNR
that varies by up to 20 dB between different USRP transmit-
ters. To avoid interference from ambient 2.4 and 5 GHz ISM
band signals, we conducted experiments in two 418 MHz-
wide spectra: 4.73 to 5.15 GHz and 1.93 to 2.35 GHz, each
divided into nineteen 22 MHz bands. We vary the spectrum
occupancy from 10% to 90%. We also vary the type of modu-
lation being used. We test with single carrier BPSK and QAM
as well as OFDM signals. Note that single carrier modulation
has a non-flat power spectral density and significantly more
leakage, so it results in higher false positive rates as we show
in section 8. We also leverage the testbed to compare S3 with
state-of-the-art sensing systems as our baselines. We ran over
5000 experiments with different configuration of occupancy,
power, modulation, etc.

8 Results

In this section, we present our main evaluation results along
with a few microbenchmarks that provide insights into the
performance of S3 in various spectra.

Evaluation Metrics: We evaluate S3 using following metrics:
• False Positive Rate (FPR): Percentage of empty bands that

S3 incorrectly reports as occupied.
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Figure 9: False positives and negatives as a function of spectrum occupancy: The figure shows the false positive rate (FPR) and false negative rate (FNR) of
S3 as the spectrum occupancy increases when: (a) Modulation schemes are randomly picked by transmitters. (b) Transmitters only use OFDM modulation. (c)
shows the receiver operating characteristic (ROC) curve of S3 when the modulation schemes are randomly picked.

• False Negative Rate (FNR): Percentage of occupied bands
that S3 incorrectly reports as empty.

• True Positive Rate (TNR): Percentage of occupied bands
that S3 correctly reports as occupied.

A. Sensing Densely Occupied Spectrum:
Fig. 9 shows S3’s error rate in detecting occupied bands as we
vary the total occupancy of the spectrum between 10% and
90%. Fig. 9(a) shows the results when the transmitters ran-
domly pick a modulation scheme (e.g. single carrier BPSK,
QAM, or OFDM). In this case, when the total occupancy of
the spectrum is less than 30%, S3 achieves a median false pos-
itive rate (FPR) less than 0.5% and a median false negative
rate (FNR) of 0%. As the total occupancy increases and the
spectrum becomes more crowded, the FPR and FNR gradu-
ally increase. However, even when the spectrum is extremely
crowded (∼ 90% occupied), S3 can still achieve 2% median
FPR and 0.47% median FNR.

Fig. 9(b) shows the same results when the transmitters only
use OFDM modulation. In this case, the FPR and FNR be-
come even smaller at all levels of occupancy with a maximum
median FPR of 0.6% and a maximum median FNR of 0.25%.
This result can be attributed to two factors: (1) OFDM signals
have flat power spectral densities. Therefore, signal power
detected in the spike train can more accurately reflect the sig-
nal presence in the corresponding channels. (2) Single carrier
modulation schemes have lower spectral efficiency and leak
power outside their bands, which leads to a higher FPR as can
be seen from Fig. 9(a). Finally, Fig. 9(c) shows the receiver
operating characteristic (ROC) curve, which demonstrates the
trade-off between false positives and false negatives as we
vary the threshold for detecting occupied band.

B. Comparison with State-of-the-Art:
We compare S3 with three baselines from prior work:
• BigBand: [21] leverages sparse Fourier transform and uses

co-prime sampling to acquire sparse spectrum. It achieves
6× sub-sampling below the Nyquist rate, but only works
when the spectrum is sparse.

• D-BigBand: [43] extends BigBand to sense dense spectrum
by considering the differential changes in occupancy. It also
achieves 6× sub-sampling, but assumes the changes in the

Table 1: Sum of false positives and negatives for S3 and State-of-the-Art
prior work: The table compares the sum of FPR and FNR of S3, BigBand,
D-BigBand, and SweepSense at different spectrum occupancies.

BigBand D-BigBand SweepSense S3

10% 0.38% + 14%
(unresolved)

∼ 0.95% 4.88% 0.00%

50% N/A ∼ 1.75% 13.09% 1.29%
90% N/A ∼ 3% 13.76% 2.47%

spectrum occupancy over time are sparse.
• SweepSense: [20] enhances USRP software-defined radio’s

ability to quickly scan and sense wideband spectrum. It is
able to scan 5 GHz bandwidth in 5 ms with 2× 25 MS/s
ADC sampling rate.
Table 1 shows the sum of FPR and FNR when the total

spectrum occupancy is 10%, 50%, and 90%. We compare
S3 directly to the results reported in [21] and [43], because
they used custom hardware but were evaluated using the same
metrics as ours. One can see that in sparse spectrum (<10%
occupied) where BigBand works, BigBand has a total error
rate of 0.38% but still cannot recover the status of 14% of
the spectrum. In contrast, S3 accomplishes a 0% error rate at
such low spectrum occupancy and samples 8.5× below the
Nyquist rate, which exhibits a 1.4× gain over BigBand.

D-BigBand is able to work in densely occupied spectrum.
It has a total error rate of 0.95% and 3% when the spectrum is
50% and 90% occupied respectively. However, S3 is able to
outperform D-BigBand at all occupancy levels with a 1.2×
to 1.35× gain in accuracy. Moreover, S3 also achieves 1.4×
gain in sampling rate reduction and makes no assumptions
on the changes in spectrum occupancy. Therefore, unlike D-
BigBand, S3 can monitor highly dynamic spectrum, which
we will demonstrate later in this section.

To compare S3 to SweepSense, we reproduce SweepSense
on a N210 USRP with a CBX daughterboard using the
codes and FPGA images released by the authors. We use
SweepSense to sense the spectrum generated by our testbed
along with S3. In Fig. 10, we show SweepSense’s error rate in
detecting occupied bands as we vary the spectrum occupancy
between 10% and 90%, and when the modulation scheme is
randomly picked by the transmitters. This result shows that
SweepSense can work in densely occupied spectrum. When
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the spectrum is 10% occupied, SweepSense achieves an FPR
of 3.88% and an FNR of 1%. As the spectrum becomes more
crowded, the FPR and FNR of SweepSense increase, but they
remain below 10% and 3.76% respectively even if the spec-
trum is 90% occupied. SweepSense’s higher error rates are
likely due to the fact that fast LO sweeping can smear non-
empty frequency components, resulting in more leakage from
the occupied bands to the adjacent bands, which increases its
false positive rates. We also note that, SweepSense requires
accurate phase information for the digital chirp demodulation,
so it is sensitive to the IQ imbalance in the hardware, which
is likely why it underperforms S3. However, SweepSense is
highly valuable as we can combine it with S3 to capture the
power spectral density as we show later in this section.

Next, we present some microbenchmarks that provide more
insights into the working of S3 and its performance.

C. Microbenchmark - Sensitivity:
To understand the ability of S3 to detect low signal-to-noise
ratio (SNR) signals, we examine the FNR of bands with dif-
ferent SNRs. The SNR we show is the average signal power
per Hz of RX signal / noise floor. We compare four different
sampling duration: 10, 20, 40, and 100 µs. The FNR is high
when the SNR is low, however, this can be addressed by in-
creasing the sampling duration. In fact, we can reduce the
FNR by 5× at 3dB SNR. As the SNR gets higher, the FNR
goes down and down, and eventually even for shoft sampling
windows, the FNR is very low (≈ 0%). Note that 40∼ 100 µs
is a short enough window to detect short transient packets and
fleeting signals, as it is comparable to the DIFS duration for
Wi-Fi carrier sensing (e.g. 34 or 50 µs).

D. Microbenchmark - Dynamic Range:
Here we evaluate the dynamic range of S3, which is the ratio
between the strongest and weakest signal powers S3 can ac-
curately detect at the same time. It reflects the ability of S3 to
detect low-power signals with the presence of much higher
power signals, that would cause interference and lower the
signal-to-noise-pluse-interference ratio (SINR), making low-
power signals harder to be detected. In Figure 12, we compare
the FNRs in experiments with different dynamic ranges. One
can see that S3 achieves very low FNR (< 0.63%) when the
power difference between the occupied bands is up to 15 dB.
As the signal power difference becomes even larger, the FNR
of S3 increases. When the spectrum dynamic range reaches

∼ 21 dB, the FNR of S3 is 2.54%. This result shows that S3

can accurately detect (FPN<1%) the relatively weak signals
under interference from signals 19 dB stronger.5

E. Microbenchmark - Resolving Collisions with Voting:
We want to verify that through voting using two different sam-
pling rates, S3 can effectively resolve frequency collisions.
To this end, we compare S3 to baselines where we detect
the spectrum occupancy using only one ADC. In Fig. 13(a),
we qualitatively compare the correctness of occupancy de-
tection on each band in 20 randomly selected experiments.
It shows that when using either ADC alone, we have many
false positives due to frequency collisions. However, the two
ADCs exhibit false positives in different bands, because they
experience frequency collisions between different spikes. As
a result, through voting S3 is able to distinguish and resolve
false positives where the two sampling rates disagree with
each other. Furthermore, we also quantitatively show the FPR
of S3 and baselines. As can be seen from Fig. 13(b), the FPR
of S3 is much lower than those of baselines, which suggests
that our voting scheme can effectively leverage the differ-
ent sampling rates to resolve frequency collisions. Note that
ADC1 outperforms ADC2. This is expected because, as we
discussed in section 6, 45.5 MHz is an optimized sampling
rate that can spread out the spikes and minimize the frequency
collisions. In contrast, the second sampling rate of 52.74 MHz
is optimized to avoid having the same collisions as ADC1, so
it does not work as well by itself.

F. Monitoring Dynamic Spectrum:
S3 senses all bands in the spectrum in real-time and makes
no assumptions on the changes of spectrum occupancy, so it
can monitor highly dynamic spectrum with rapidly-changing
occupancied bands. To evaluate this ability of S3 we create
a rapidly-changing spectrum in our testbed whose occupied
bands change every 327 µs, and as a result, the total spectrum
occupancy varies between 0% and 63%. We use S3 to contin-
uously monitor the occupancy changes in the spectrum, and
output a signal power estimation and occupancy detection
for every 76 µs-long frame. We show a spectrogram captured
by S3 consisting the signal power detected in every band per

5After wire-bonding, the spike-train filter experiences degradation in the
out-of-band suppression due to the direct leakage from the input port to the
output port of the PCB. Hence, the sensitivity and dynamic range of S3 also
degrade, but this issue can be resolved by better isolation in the PCB design.
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Figure 14: Monitoring rapidly-changing spectrum: The figure shows (a)
spectrogram (b) spectrum occupancy captured by S3 in real time.

frame in Fig. 14(a). Furthermore, we show the accuracy of the
corresponding occupancy detection per frame in Fig. 14(b).
It shows that S3 is able to capture the occupancy of rapidly-
changing spectrum with great accuracy and time precision.

G. Capturing Wideband Power Spectral Density:
As we mentioned in section 7, we can sweep the LO frequency
of S3 over the 22 MHz spacing between spikes to sense all
the frequencies in the spectrum. This enables S3 to capture
the power spectral density (PSD) of the entire wideband spec-
trum. At every LO frequency, S3 captures signal power in the
spike train and identifies the occupancy of each spike. For the
occupied spikes, S3 uses the signal power estimates in them
to reconstruct the PSD at the corresponding RF frequencies.
When LO sweeping finishes, all frequencies on the wideband
spectrum will be reconstructed. Comparing to conventional
spectrum scanners, this extended S3 prototype only needs
to sweep a much narrower frequency range. Therefore, the
scanning time is much shorter.

Figure 15(a-c) shows the PSD captured by the extended
S3 prototype of spectra generated by our testbed, along with
the detected spike occupancy. We use S3 and an HP 8563E
Spectrum Analyzer to monitor the 1.8 to 2.4 GHz spectrum
simultaneously. As one can see, the PSDs captured by S3

match the ground truth from the spectrum analyzer very well.
Besides, we also measure PSDs of real-world spectra, both
outdoors and indoors, which are shown in Figure 15(d-f).
Figure 15(d) shows the spectrum between 1.8 and 2.4 GHz
measured outdoor at our geographical location. It shows that
S3 is able to capture the PSD of 4G LTE signals in Band 2 and

66. In Fig. 15(e) and (f), we show the PSD of 2.4 GHz and
5 GHz Wi-Fi signals captured by S3 respectively. One can see
that Channel 1 and 11 in the 2.4 GHz band as well as four non-
overlapping 20 MHz channels (Channel 116, 120, 124, and
128) from 5.57 to 5.65 GHz in the 5 GHz band are being used.
Figure 15(d-f) demonstrate that the real-world PSDs captured
by S3 also closely match the spectrum analyzer ground truth.
On some frequencies that S3 classifies as empty, the spectrum
analyzer shows some non-zero spectral components. However,
this is expected because in our experiments, the spectrum
analyzer takes the maximum over a lot more scans than S3.

9 Related Work

In this section, we provide more related work. For further
background, we refer the reader to section 2.

Spectrum sensing has been extensively studied in the past
two decades [3, 5, 49]. However, most of this work focuses
on narrowband sensing [6, 7, 9, 23, 25, 35, 38, 62]. In contrast,
this paper focuses on wideband spectrum sensing to enable
dynamic spectrum sharing of many channels. Several sys-
tems attempt to sense wideband spectrum using narrowband
sensors without sequentially scanning each band [42, 46, 61].
QuickSense [61] leverages analog filters and energy detectors
to hierarchically sense wide bandwidth by detecting the total
signal power in groups of consecutive channels. However,
when the spectrum is densely occupied, QuickSense’s ap-
proach reduces to sequentially scanning the spectrum. SpecIn-
sight [42] leverages machine learning to predict spectrum
occupancy based on learned utilization patterns and optimize
which channels to sense. Similarly, [46] uses time-series anal-
ysis to predict which bands are occupied. However, these
systems are sensitive to training data and assume that trans-
missions follow predictable patterns. Spectrum sharing is
based on opportunistic access and as a result is highly dy-
namic and unpredictable [50].

Recent work aims to enhance USRP software-defined
radio’s ability to sense wideband spectrum [20, 26].
SweepSense [20] enables sensing wideband spectrum by
quickly sweeping the center frequency of the USRP. It is
able to sweep 5 GHz bandwidth in 5 ms, which offers great
potential for sensing an extremely wideband spectrum on
commercial software radios. However, SweepSense requires
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Figure 15: Wideband Power Spectral Density Capture: The figure shows the wideband power spectral density captured by the extended S3 prototype.
Spectrum (a-c) are generated by our evaluation testbed. Spectrum (d-f) are real-world spectra captured both outdoor and indoor.

accurate phase information for the digital chirp demodulation
and is sensitive to the IQ imbalance. As a result, our compar-
ison with SweepSense in section 8 shows that it can suffer
from a high error rate especially when the spectrum is not
sparse. SparSDR [26] reduces the backhaul and computation
requirements for sensing sparse spectrum on USRPs, which
offers great utility for continuously monitoring underutilized
spectra but cannot scale to densely occupied spectrum.

The use of single passband MEMS filters in spectrum sens-
ing has been studied [33, 36]. However, these techniques
require an array of channel-select MEMS filters to form a
reconfigurable filter bank. In contrast, S3 only uses a single
MEMS spike-train filter that consists of overtone resonators.

Our work is also related to theoretical work on co-prime
sampling [54, 56, 57] and multicoset sampling [22, 55] of
sparse wideband spectrum. These approaches also do not
work for densely occupied spectrum. Moreover, [56, 57] re-
quire using k ADCs where k is the number of occupied fre-
quencies. [22, 55] aim to recover the signals in each occupied
band and must assume prior knowledge of which bands are
occupied. In contrast, S3 aims to recover the occupancy of
each band and uses 2 ADCs irrespective of the number of
occupied frequencies. S3 is further implemented and shown
to work in practice.

Sub-Nyquist sampling has been used for test equipment
to reconstruct wideband periodic signals [44, 52]. However,
these techniques require the signal to be periodic and repeat
for a long time in order to take on samples during each period
until all samples are recovered. Hence, these techniques are
not applicable to real communication signals where the signal
is constantly changing and carries different modulated bits.

Finally, some works aim to capture spectrum usage at large
geographical and time scales through crowdsourcing [10, 37,
63]. S3 is complementary to these works, as it enables real-
time wideband occupancy detection of every single sensor
with minimum data size and computational complexity.

10 Limitations

In this section, we discuss some limitations of S3.

• The frequency-domain sampling rate and maximum
sensing bandwidth is limited by the filter design trade-

offs. As a result, narrowband signals (< 20 MHz) and
over GHz-wide spectrum cannot be sensed using a sin-
gle spike-train filter. This can be resolved by hopping
the LO frequency as shown in Section 8. Alternatively,
we can also use the extended architectures proposed in
appendix A that combines multiple spike-train filters in
parallel to break the fixed filter-level design trade-offs.

• Sub-Nyquist sampling leads to aliasing of both signals
and noise, which typically lowers the signal SNR and
degrades the spectrum sensor’s sensitivity. To minimize
the loss of SINR, we design the spike-train filters to have
low insertion loss and high out-of-band suppression i.e.,
most of the noise is filtered out before it aliases. More-
over, instead of detecting signal power, known signals
like the preambles can be leveraged to improve the sen-
sitivity [48]. However, directly applying this technique
to S3 would require further research as the preambles
might become corrupted after applying the filter.

• While S3 can detect the occupancy of the different bands
and reconstruct the power spectral density of the spec-
trum, it cannot recover complex I and Q samples of the
signal. As results, S3 cannot reconstruct the signal itself
or decode the data in the signal.

11 Conclusion

This paper presents S3, a new efficient real-time wideband
spectrum sensing mechanism that can work in densely occu-
pied spectrum. S3 monitors only a small fraction of bandwidth
in each band to accomplish significantly below-Nyquist sam-
pling and hence great energy efficiency. It leverages recent ad-
vances in RF MEMS filtering solution that enables sampling
the spectrum along the frequency axis. Empirical evaluation
demonstrates that S3 can accurately sense densely occupied
spectrum and rapidly-changing spectrum; we also show that
S3 can be extended to capture the power spectral density of the
entire spectrum. We believe S3 can enable dynamic spectrum
access and very high spectrum utilization.
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Why analog-to-information converters suffer in high-
bandwidth sparse signal applications. IEEE Trans-
actions on Circuits and Systems I: Regular Papers,
60(9):2273–2284, 2013.

[3] A. Ali and W. Hamouda. Advances on spectrum sensing
for cognitive radio networks: Theory and applications.
IEEE Communications Surveys Tutorials, 19(2):1277–
1304, 2017.

[4] Analog Devices, Norwood, MA, USA. 12-Bit, 2.6
GSPS/2.5 GSPS/2.0 GSPS, 1.3 V/2.5 V Analog-to-
Digital Converter AD9625 Data Sheet.

[5] Y. Arjoune and N. Kaabouch. A comprehensive survey
on spectrum sensing in cognitive radio networks: Recent
advances, new challenges, and future research directions.
Sensors (Basel, Switzerland), 19(1):126, 01 2019.

[6] E. Axell and E. G. Larsson. Optimal and sub-optimal
spectrum sensing of ofdm signals in known and un-
known noise variance. IEEE Journal on Selected Areas
in Communications, 29(2):290–304, Feb. 2011.

[7] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and
M. Welsh. White space networking with wi-fi like con-
nectivity. ACM SIGCOMM Computer Communication
Review, 39(4):27–38, 2009.

[8] M. Bao and H. Yang. Squeeze film air damping in mems.
Sensors and Actuators A: Physical, 136(1):3 – 27, 2007.
25th Anniversary of Sensors and Actuators A: Physical.

[9] D. Bhargavi and C. R. Murthy. Performance compari-
son of energy, matched-filter and cyclostationarity-based
spectrum sensing. In 2010 IEEE 11th International
Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pages 1–5, June 2010.

[10] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R.
Das. Specsense: Crowdsensing for efficient querying of
spectrum occupancy. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, pages 1–9.
IEEE, 2017.

[11] A. A. Cheema and S. Salous. Digital fmcw for ultraw-
ideband spectrum sensing. Radio Science, 51(8):1413–
1420, 2016.

[12] DigiKey. Data acquisition - analog to digital converters
(adc). https://www.digikey.com/products/en/integrated-
circuits-ics/data-acquisition-analog-to-digital-
converters-adc, Sep. 2020.

[13] Federal Communications Commission. 3.5 ghz
band overview. https://www.fcc.gov/wireless/bureau-
divisions/mobility-division/35-ghz-band/35-ghz-band-
overview, Jan. 2020.

[14] Federal Communications Commission. Fcc
adopts new rules for the 6 ghz band, unleashing
1,200 megahertz of spectrum for unlicensed use.
https://www.fcc.gov/document/fcc-opens-6-ghz-band-
wi-fi-and-other-unlicensed-uses, Apr. 2020.

[15] Federal Communications Commission. White space.
https://www.fcc.gov/general/white-space, Jan. 2020.

[16] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro, and
E. W. Knightly. Ieee 802.11ay: Next-generation 60 ghz
communication for 100 gb/s wi-fi. IEEE Communica-
tions Magazine, 55(12):186–192, 2017.

[17] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price,
and L. Shi. Sample-optimal average-case sparse fourier
transform in two dimensions. In 2013 51st Annual
Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1258–1265. IEEE, 2013.

[18] S. Gong, Y. Song, T. Manzaneque, R. Lu, Y. Yang, and
A. Kourani. Lithium niobate mems devices and sub-
systems for radio frequency signal processing. In 2017
IEEE 60th International Midwest Symposium on Cir-
cuits and Systems (MWSCAS), pages 45–48, 2017.

[19] Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins,
C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan,
and S. Wang. A 40gs/s 6b adc in 65nm cmos. In 2010
IEEE International Solid-State Circuits Conference -
(ISSCC), pages 390–391, 2010.

[20] Y. Guddeti, R. Subbaraman, M. Khazraee, A. Schulman,
and D. Bharadia. Sweepsense: Sensing 5 ghz in 5 mil-
liseconds with low-cost radios. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), Feb. 2019.

[21] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi.
Ghz-wide sensing and decoding using the fourier trans-
form. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications, Apr. 2014.

[22] C. Herley and Ping Wah Wong. Minimum rate sampling
and reconstruction of signals with arbitrary frequency
support. IEEE Transactions on Information Theory,
45(5):1555–1564, 1999.



[23] S. Hong and S. Katti. Dof: a local wireless information
plane. In Proceedings of the ACM SIGCOMM 2011
conference, pages 230–241, 2011.

[24] M. Kadota, S. Tanaka, Y. Kuratani, and T. Kimura. Ul-
trawide band ladder filter using sh0 plate wave in thin
linbo3 plate and its application. In 2014 IEEE Interna-
tional Ultrasonics Symposium, pages 2031–2034, 2014.

[25] S. Kapoor, S. Rao, and G. Singh. Opportunistic spec-
trum sensing by employing matched filter in cognitive ra-
dio network. In 2011 International Conference on Com-
munication Systems and Network Technologies, pages
580–583, June 2011.

[26] M. Khazraee, Y. Guddeti, S. Crow, A. C. Snoeren,
K. Levchenko, D. Bharadia, and A. Schulman. Sparsdr:
Sparsity-proportional backhaul and compute for sdrs.
In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,
MobiSys ’19, page 391–403, 2019.

[27] J. N. Laska, W. F. Bradley, T. W. Rondeau, K. E. Nolan,
and B. Vigoda. Compressive sensing for dynamic spec-
trum access networks: Techniques and tradeoffs. In 2011
IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN), 2011.

[28] R. Lu, T. Manzaneque, Y. Yang, A. Kourani, and
S. Gong. Lithium niobate lateral overtone resonators
for low power frequency-hopping applications. In
2018 IEEE Micro Electro Mechanical Systems (MEMS),
pages 751–754, 2018.

[29] R. Lu, T. Manzaneque, Y. Yang, J. Zhou, H. Hassanieh,
and S. Gong. Rf filters with periodic passbands for
sparse fourier transform-based spectrum sensing. Jour-
nal of Microelectromechanical Systems, 27(5):931–944,
2018.

[30] Y. Ma, Y. Gao, A. Cavallaro, C. G. Parini, W. Zhang,
and Y. Liang. Sparsity independent sub-nyquist rate
wideband spectrum sensing on real-time tv white
space. IEEE Transactions on Vehicular Technology,
66(10):8784–8794, 2017.

[31] M. Mishali and Y. C. Eldar. From theory to practice:
Sub-nyquist sampling of sparse wideband analog signals.
IEEE Journal of Selected Topics in Signal Processing,
Apr. 2010.

[32] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan.
Xampling: Analog to digital at sub-nyquist rates. IET
Circuits, Devices Systems, Jan. 2011.

[33] T. Mukherjee, G. K. Fedder, H. Akyol, U. Arslan,
J. Brotz, F. Chen, A. Jajoo, C. Lo, A. Oz, D. P. Ra-
machandran, V. K. Saraf, M. Sperling, and J. Stillman.

Reconfigurable mems-enabled rf circuits for spectrum
sensing. In Government Microcircuit Applications and
Critical Technology Conference, 2005.

[34] B. Murmann. A/d converter trends: Power dissipation,
scaling and digitally assisted architectures. In 2008
IEEE Custom Integrated Circuits Conference, pages
105–112, 2008.

[35] A. Nasser, A. Mansour, K. C. Yao, H. Charara, and
M. Chaitou. Efficient spectrum sensing approaches
based on waveform detection. In The Third Interna-
tional Conference on e-Technologies and Networks for
Development (ICeND2014), pages 13–17, April 2014.

[36] C. T. C. Nguyen. Mems-based rf channel selection for
true software-defined cognitive radio and low-power sen-
sor communications. IEEE Communications Magazine,
51(4):110–119, 2013.

[37] D. Pfammatter, D. Giustiniano, and V. Lenders. A
software-defined sensor architecture for large-scale
wideband spectrum monitoring. In Proceedings of the
14th International Conference on Information Process-
ing in Sensor Networks, pages 71–82, 2015.

[38] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and
F. Edalat. Learning to share: narrowband-friendly wide-
band networks. ACM SIGCOMM Computer Communi-
cation Review, 38(4):147–158, 2008.

[39] M. Rashidi, K. Haghighi, A. Panahi, and M. Viberg. A
nlls based sub-nyquist rate spectrum sensing for wide-
band cognitive radio. In 2011 IEEE International Sym-
posium on Dynamic Spectrum Access Networks (DyS-
PAN), pages 545–551. IEEE, 2011.

[40] M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza. Ultra-thin
super high frequency two-port aln contour-mode res-
onators and filters. In TRANSDUCERS 2009 - 2009 In-
ternational Solid-State Sensors, Actuators and Microsys-
tems Conference, pages 577–580, 2009.

[41] S. K. Sharma, E. Lagunas, S. Chatzinotas, and B. Otter-
sten. Application of compressive sensing in cognitive
radio communications: A survey. IEEE Communica-
tions Surveys Tutorials, 18(3):1838–1860, 2016.

[42] L. Shi, P. Bahl, and D. Katabi. Beyond sensing: Multi-
ghz realtime spectrum analytics. In 12th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 15), May 2015.

[43] L. Shi, H. Hassanieh, and D. Katabi. D-bigband: Sensing
ghz-wide non-sparse spectrum on commodity radios. In
Proceedings of the 6th Annual Workshop on Wireless of
the Students, by the Students, for the Students, S3 ’14,
page 13–16, 2014.



[44] A. J. Silva. Reconstruction of undersampled periodic
signals. MIT Technical Report, 1986.

[45] Y. Song and S. Gong. Wideband spurious-free lithium
niobate rf-mems filters. Journal of Microelectromechan-
ical Systems, 26(4):820–828, 2017.

[46] J. Su and W. Wu. Wireless spectrum prediction model
based on time series analysis method. In Proceedings of
the 2009 ACM workshop on Cognitive radio networks,
pages 61–66, 2009.

[47] S. Subramaniam, H. Reyes, and N. Kaabouch. Spec-
trum occupancy measurement: An autocorrelation based
scanning technique using usrp. In 2015 IEEE 16th An-
nual Wireless and Microwave Technology Conference
(WAMICON), pages 1–5, 2015.

[48] H. Sudo, K. Kosaka, H. Kanemoto, N. Gejoh, T. Ya-
sunaga, and M. Uesugi. Study of spectrum sensing
scheme using received power within preamble signals.
In 2017 20th International Symposium on Wireless Per-
sonal Multimedia Communications (WPMC), pages 592–
597, 2017.

[49] H. Sun, A. Nallanathan, C. Wang, and Y. Chen. Wide-
band spectrum sensing for cognitive radio networks: a
survey. IEEE Wireless Communications, 20(2):74–81,
April 2013.

[50] The Software Defined Radio Forum Inc. Application of
management technologies in dynamic spectrum sharing,
Jul. 2019.

[51] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg,
and R. G. Baraniuk. Beyond nyquist: Efficient sampling
of sparse bandlimited signals. IEEE transactions on
information theory, 56(1):520–544, 2009.

[52] N. Tzou, D. Bhatta, S. Hsiao, H. W. Choi, and A. Chatter-
jee. Low-cost wideband periodic signal reconstruction
using incoherent undersampling and back-end cost opti-
mization. In 2012 IEEE International Test Conference,
pages 1–10, 2012.

[53] U.S. Government. CFR title 47 section 96.67 environ-
mental sensing capability, Jan. 2020.

[54] P. P. Vaidyanathan and P. Pal. Sparse sensing with co-
prime samplers and arrays. IEEE Transactions on Signal
Processing, 59(2):573–586, 2011.

[55] R. Venkataramani and Y. Bresler. Perfect reconstruction
formulas and bounds on aliasing error in sub-nyquist
nonuniform sampling of multiband signals. IEEE Trans-
actions on Information Theory, 46(6):2173–2183, 2000.

[56] X. G. Xia. On estimation of multiple frequencies in
undersampled complex valued waveforms. IEEE trans-
actions on signal processing, 47(12):3417–3419, 1999.

[57] X. G. Xia. An efficient frequency-determination algo-
rithm from multiple undersampled waveforms. IEEE
Signal Processing Letters, 7(2):34–37, 2000.

[58] R. T. Yazicigil, T. Haque, M. R. Whalen, J. Yuan,
J. Wright, and P. R. Kinget. Wideband rapid interferer
detector exploiting compressed sampling with a quadra-
ture analog-to-information converter. IEEE Journal of
Solid-State Circuits, Dec 2015.

[59] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and
A. Emami-Neyestanak. A 100mhz–2ghz 12.5 x sub-
nyquist rate receiver in 90nm cmos. In 2012 IEEE
Radio Frequency Integrated Circuits Symposium, pages
31–34. IEEE, 2012.

[60] J. Yoo, C. Turnes, E. B. Nakamura, C. K. Le, S. Becker,
E. A. Sovero, M. B. Wakin, M. C. Grant, J. Romberg,
A. Emami-Neyestanak, and E. Candes. A compressed
sensing parameter extraction platform for radar pulse
signal acquisition. IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, 2(3):626–638,
2012.

[61] S. Yoon, L. E. Li, S. C. Liew, R. R. Choudhury, I. Rhee,
and K. Tan. Quicksense: Fast and energy-efficient chan-
nel sensing for dynamic spectrum access networks. In
2013 Proceedings IEEE INFOCOM, April 2013.

[62] T. Yucek and H. Arslan. A survey of spectrum sensing
algorithms for cognitive radio applications. IEEE com-
munications surveys & tutorials, 11(1):116–130, 2009.

[63] Y. Zeng, V. Chandrasekaran, S. Banerjee, and D. Gius-
tiniano. A framework for analyzing spectrum charac-
teristics in large spatio-temporal scales. In The 25th
Annual International Conference on Mobile Computing
and Networking, pages 1–16, 2019.

[64] C. Zuo, N. Sinha, and G. Piazza. Very high frequency
channel-select mems filters based on self-coupled piezo-
electric aln contour-mode resonators. Sensors and Actu-
ators A: Physical, 160(1):132 – 140, 2010.

Appendix A Alternative S3 Architectures

As we mentioned in section 7, we can extend S3 to use two
or more MEMS filters in parallel to enlarge the sensing band-
width or enable S3 to sense different channel allocations in-
cluding narrower bands and even non-uniformly allocated
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Figure 16: Circuit diagram and emulated spike-train filter for alternative S3

architecture leveraging LO center frequency difference.

bands. This system level parallelism introduces another de-
gree of freedom and allows us to break the fixed design trade-
offs at the filter level. Here, we present some alternative ar-
chitectures of S3 that combine two spike-trains filters.
(1) Changing LO Center Frequencies: First, we can com-
bine two identical spike-train filters that are fabricated using
the same process. Hence, these two filters will have almost
identical frequency responses with the same center frequency
fc and spacing between spikes ∆ f . In order to cover different
frequencies in the RF spectrum, we use the two filters on
separate receiver RF chains with different LO frequencies.
We demonstrate the circuit diagram and the emulated spike
trains in the RF spectrum in Fig. 16.

After bandpass filtering and amplifying the received signal,
we split the RF signal into two channels, and use two LOs with
center frequencies f A

LO and f B
LO to down-convert the signal to

the IF frequencies. Then we pass each IF signal into a spike-
train filter to sampling the spectrum along the frequency axis.
Based on the LO frequency difference d fLO = f B

LO− f A
LO, we

can emulate two types of spike trains, as shown in Fig. 16(i)
and (ii). When ∆ fLO < ∆ f , the two spike trains are slightly
shifted on the frequency axis as shown in Fig. 16(i). As a
result, we can emulate a spike-train filter with narrower spac-
ing between the spikes. This increases the frequency domain
sampling rate of the filter and enables S3 to sense narrower
channel bandwidths. On the other hand, when d fLO = K∆ f ,
the two spike trains are concatenated along the frequency axis
as shown in Fig. 16(ii). In this way, a longer spike train with
more spikes covering wider bandwidth is emulated.

Although it is straight forward to sample the two IF signals
separately, the number of ADCs required will increase linearly
with the number of spike-train filters. Instead, after passing
IF signals on the two channels through the spike-train filters,
we combine the filtered signals and sample the combined
signal using two low-speed ADCs. The analog combination
and splitting can be achieved using an RF power combiner
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Figure 17: Circuit diagram and emulated spike-train filter for alternative S3

architecture leveraging different MEMS spike-train filters.

in series with an RF power splitter, but it can also be done
using a RF hybrid coupler. Note that with more spikes in
the emulated filter, there will be more aliasing in the sub-
sampled spectrum. Therefore, a higher ADC sampling rate
might be needed, but the sampling rate should be able to scale
sublinearly with respect to the number of spikes. Besides,
the ADC input cutoff frequency needs to be higher than the
spike-train bandwidth.

The advantage of this architecture is that we can use the
same MEMS spike-train filter on the two channels without
needing to redesign a new filter. However, it requires two LOs
and mixers which increases the cost and power consumption
of the system. 6

(2) Changing Spike-Train Filter Structure: Instead of intro-
ducing a second local oscillator, we can use only one LO and
two different spike-train filters to emulate spike trains with
wider bandwidth as well as narrower or nonuniform spike
spacing. As we mentioned in section 3, we can modify the
width of the piezoelectric film and the position of the elec-
trodes to obtain different ∆ f and fc. When two spike-train
filters with different ∆ f and/or fc are combined in parallel,
we can emulate a spike train with more sophisticated sparsity
structures. We show the circuit diagram for this type of al-
ternative architectures in Fig. 17, along with three emulated
spike-train filter frequency responses.

In this architecture, the down-converted IF signal is split
and filtered by two different MEMS spike-train filters, whose
center frequencies and spike spacing are f A

c , f B
c , and ∆ f A,

∆ f B. The output spectra of the two filters are then combined
and sampled by two low-speed ADCs. Using this architecture,
we can emulate the same spike trains as the first alternative
architecture. For instance, when the difference between the
filter center frequencies d fc = f B

c − f A
c < ∆ f , as shown in

Fig. 17(i), the two spike trains are slightly shifted on the

6Since the power consumption of spectrum sensors is dictated by the
ADC [58], the additional power consumption of the second LO is not the
primary concern.



frequency axis and emulate a spike-train filter with narrower
spacing between the spikes. Besides, when d fc = K∆ f , the
two spike trains are spaced by the bandwidth of the spike
train and emulate a wider bandwidth spike train as shown
in Fig. 17(ii). However, in additional to enlarging the filter
bandwidth and narrowing the spike spacing, we can even

emulate a non-uniformly spike train as as shown in Fig. 17(iii).
This is achieved by combining two spike-train filters with
different ∆ f A and ∆ f B. Such spike train profile provides us
with all sorts of frequency resolutions across the spectrum
to accommodate the different channel bandwidth required by
the secondary users in TV Whitespace and CBRS bands.
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